5,600 research outputs found

    Dispersion-managed soliton in optical fibers with zero average dispersion

    Full text link
    The dispersion-managed (DM) optical system with step-wise periodical variation of dispersion is studied in the framework of path-averaged Gabitov-Turitsyn equation. The soliton solution is obtained by iterating the path-averaged equation. The dependence of soliton parameters on dispersion map strength is investigated together with the oscillating tails of soliton.Comment: 5 pages, 2 figures, to appear in Optics Letters 25, #16 (2000

    Lateness Gene Concerning Photosensitivity Increases Yield, by Applying Low to High Levels of Fertilization, in Rice, a Preliminary Report

    Full text link
    Various genes controlling heading time have been reported in rice. An isogenic-line pair of late and early lines “L” and “E” were developed from progenies of the F1 of Suweon 258 × an isogenic line of IR36 carrying Ur1 gene. The lateness gene for photosensitivity that causes the difference between L and E was tentatively designated as “Ex(t)”, although it's chromosomal location is unknown. The present study was conducted to examine the effects of Ex(t) on yield and related traits in a paddy field in two years. Chemical fertilizers containing N, P2O5 and K2O were applied at the nitrogen levels of 4.00, 9.00 and 18.00 g/m2 in total, being denoted by "N4", "N9" and "N18", respectively, in 2014. L was later in 80%-heading by 18 or 19 days than E. Regarding total brown rice yield (g/m2), L and E were 635 and 577, 606 and 548, and 590 and 501, respectively, at N18, N9 and N4, indicating that Ex(t) increased this trait by 10 to 18%. Ex(t) increased yield of brown rice with thickness above 1.5mm (g/m2), by 9 to 15%. Ex(t) increased spikelet number per panicle by 16 to 22% and spikelet number per m2 by 11 to 18%. Thousand-grain weight (g) was 2 to 4% lower in L than in E. L was not significantly different from E in ripened-grain percentage. Hence, Ex(t) increased yield by increasing spikelet number per panicle. It is suggested that Ex(t) could be utilized to develop high yielding varieties for warmer districts of the temperate zone

    3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described

    On 3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report

    MEASUREMENTS OF WINDING SPEED OF ROVING

    Get PDF
    ArticleJournal of the Faculty of Textile Science and Technology, Shinshu University. Ser. B, Engineering 14: 1-14(1979)departmental bulletin pape

    Dispersion-managed soliton in a strong dispersion map limit

    Full text link
    A dispersion-managed optical system with step-wise periodical variation of dispersion is studied in a strong dispersion map limit in the framework of path-averaged Gabitov-Turitsyn equation. The soliton solution is obtained by iterating the path-averaged equation analytically and numerically. An efficient numerical algorithm for obtaining of DM soliton shape is developed. The envelope of soliton oscillating tails is found to decay exponentially in time while the oscillations are described by a quadratic law.Comment: 11 Pages, 3 Figures; Submitted to Optics Letter
    corecore